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Abstract

Our research focuses on a fourth-order partial differential equation (PDE) that arises from the
Timoshenko model for beams. This PDE pertains to situations where the elastic moduli remain
constant and an external load, represented as F, is applied. We thoroughly analyze Lie sym-
metries and categorize the various types of applied forces. Initially, the principal Lie algebra is
two-dimensional, but in certain noteworthy cases, it extends to three dimensions or even more.
For each specific case, we derive the optimal system, which serves as a foundation for symme-
try reductions, transforming the original PDE into ordinary differential equations. In certain
instances, we successfully identify exact solutions using this reduction process. Additionally,
we delve into the conservation laws using a direct method proposed by Anco, with a particu-
lar focus on specific classes within the equation. The findings we have presented in our study
are indeed original and innovative. This study serves as compelling evidence for the robustness
and efficacy of the Lie symmetrymethod, showcasing its ability to provide valuable insights and
solutions in the realm of mathematical analysis.

Keywords: Timoshenko beam equation; fourth-order partial differential equation; symmetry
classification; exact solution; reductions.
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1 Introduction

The beams are structures commonly used in buildings, bridges, andmechanical constructions.
The simple Euler-Bernoulli theory [5, 4] is based upon considering only transverse bending. While
thismodel is suitable for slender beams, it does not adequately representmanypractical situations.
Timoshenko in 1922 proposed a model which considers transverse displacement as well as the
rotation effects. The governing equations in the presence of applied force are a system of partial
differential equations (PDEs) [7],

ρA
∂2v(x, t)

∂t2
− ∂

∂x

(
κAG(

∂v(x, t)

∂x
− φ(x, t))

)
= F (v),

ρI
∂2φ(x, t)

∂t2
− ∂

∂x
(EI

∂φ

∂x
)− κAG

(
∂v(x, t)

∂x
− φ(x, t)

)
= 0,

(1)

where v = v(x, t) is the deflection or the transverse displacement of the beam, φ = φ(x, t) the
angular displacement, A cross-section area, ρ the density of the beam, G shear modulus, κ Tim-
oshenko shear coefficient, I the area moment of the cross-section and F = F (v) the distributed
load.

Following [7], the system (1) can be merged into one-fourth order PDE by assuming that the
rotation is mainly caused by bending and the effect of distortion due to shear can be ignored.
Based on the above we can merge the system of PDEs (1) in one equation [8],

EI
∂4v(x, t)

∂x4
+ ρA

∂2v(x, t)

∂t2
− ρI[1 + γ]

∂4v(x, t)

∂x2∂t2
+

ρ2Iγ

E

∂4v(x, t)

∂t4
= F, (2)

where γ is a parameter dependent on the shape of the cross-sectional area and E is the elastic
modulus.

Dividing equation (2) by EI , and introducing the notations λ1 =
ρA

EI
, λ2 =

ρI[1 + γ]

EI
,

λ3 =
ρ2γ

E2
, we are left with the equation,

∂4v(x, t)

∂x4
+ λ1

∂2v(x, t)

∂t2
− λ2

∂4v(x, t)

∂x2∂t2
+ λ3

∂4v(x, t)

∂t4
= F (v). (3)

In equation (3), if λi = 0, for i = 1, 2, 3, we are left with static Euler-Bernoulli beam equation,
which is fully studied in [4] and Fatima et al. [6] from symmetry point of view. If λi = 0, for
i = 2, 3, then equation (3) is reduced to the dynamic Euler-Bernoulli beam equation, which is also
studied from the Lie symmetry point of view by Bokhari et al. [5], and Soh [12]. If λ3 = 0 in
equation (3) we are left with the beam equation in the Rayleigh model [14], which is thought to
be an improvement over the dynamic Euler-Bernoulli beam theory since it takes into account the
rotational inertia of the beam’s cross-section [7]. Ifλ2 = 0weget the Shear beammodel, thismodel
adds the effect of shear distortion without rotational inertia to the Euler-Bernoulli model [14]. If
none of the λi coefficients are zero, we have the Timoshenko model, which is the focus of our
paper and represents the most comprehensive form of equation (3). Interestingly, this equation
has not been explored by previous authors in terms of exact solutions. In our study, we employ
the potent Lie symmetry method, a robust technique for obtaining exact solutions, to analyze this
equation. So, in this study, we consider the following PDE;

∂4v(x, t)

∂x4
+

∂2v(x, t)

∂t2
− ∂4v(x, t)

∂x2∂t2
+

∂4v(x, t)

∂t4
= F (v), (4)
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where the applied load F is a general function of v and ρ, A, I are constants.

The Lie symmetry approach [10, 15] is a powerful and well-documented method for dealing
with exact solutions of differential equations, notably non-linear PDEs. Due to this importance in
the final section, we investigate the final form (4) from the symmetry point of view and formulate
its conservation laws for some classes by the direct method. The fourth-order beam equation,
like its second-order wave equation counterpart, it turns out, displays interesting conservation
properties, most of which are tied in with the symmetry structure of the equation. These differ for
a zero applied force F , the linear Klein-Gordon type F = δv, and the case F = δvn. In literature,
various strategies exist for handling non-linear PDEs [9, 13].

2 Lie Classification

Following is a brief summary of the Lie symmetry [11, 1], the vector field for Eq. (2) is

ℵ = ξ(x, t, v)
∂

∂x
+ τ(x, t, v)

∂

∂t
+ η(x, t, v)

∂

∂v
· (5)

The fourth order prolonged generator required for Eq. (4) is given by

ℵ[4] = ℵ+

4∑
s=1

ζi1···is
∂

∂vi1···is
· (6)

Then by invariance condition of Eq. (4) we get

ℵ[4](vxxxx + vtt − vxxtt + vtttt − F (v))|Eq(4) = 0. (7)

Separating different polynomials in v and its derivatives condition (7) gives rise to an overdeter-
mined system of PDEs. We solve this system for the resulting determining equations,

ξ = c1, τ = c2, η = c3v + γ, (8)

with γ satisfying the classifying equation

−(c3v + γ)F ′ + c3F + γxxxx + γtt − γxxtt + γtttt = 0. (9)

In the equations (8) and (9), c1, c2 and c3 are constants, γ = γ(x, t) and F is the applied load
dependent on v. If F is arbitrary non-linear function in v, then we get directly from Equations (8)
and (9) the infinitesimals

ξ = c1, τ = c2, η = 0. (10)

This implies for arbitrary F (v), Eq. (4) has the following Lie symmetry generators

ℵ1 =
∂

∂x
, ℵ2 =

∂

∂t
, (11)

which constitutes a two-dimensional symmetry algebra. It is also known as the principal algebra
of Eq. (4).

The following manifestations for the given load function F are determined by differentiating
the classifying relation (9) concerning v.

i. F (v) = αv + β, α ̸= 0,
ii. F (v) = c1(αv + β)σ + c2, α ̸= 0, σ ̸= 0, 1,
iii. F (v) = c1e

αv + c2, α ̸= 0,
iv. F (v) = c1 ln(αv + β) + c2, α ̸= 0,

(12)
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where α , β , c1 , c2 and σ are constants. But unfortunately, no one of the cases for non-linear F (v)
will extend the principal algebra, So we are left with the linear case

F = αv + β. (13)

The principal algebra in this case extends by one in addition to the infinite superposition generator.
The Lie algebra is spanned by (11) and

ℵ3 =

(
v +

β

α

)
∂

∂v
,

ℵω = ω
∂

∂v
, (14)

with ω satisfy the linear PDE ωxxxx + ωtt − ωxxtt + ωtttt = 0. As an example, we will consider the
polynomial solution of the infinite part. Suppose the polynomial is of the form

ω(x, t) = c4x
3t+ c5x

3 + c6x
2t+ c7x

2 + c8xt+ c9x+ c10t+ c11, (15)

which satisfies ωxxxx + ωtt − ωxxtt + ωtttt = 0. Then, the two-dimensional principal algebra will
extend to the eleven-dimensional Lie algebra spanned by the minimal algebra (11) and ℵ3 above
in addition to

ℵ4 = x3t
∂

∂v
, ℵ5 = x3 ∂

∂v
, ℵ6 = x2t

∂

∂v
, ℵ7 = x2 ∂

∂v
,

ℵ8 = xt
∂

∂v
, ℵ9 = x

∂

∂v
, ℵ10 = t

∂

∂v
, ℵ11 =

∂

∂v
·

(16)

3 Lie Symmetries and Optimal System

In this section, we focus on performing a symmetry classification of the beam Eq. (4) while
considering various possible load functions.

(1) When F(v) is arbitrary.

ℵ1 =
∂

∂t
, ℵ2 =

∂

∂x
· (17)

Case A: F(v) = αv + β.

ℵ1 =
∂

∂t
, ℵ2 =

∂

∂v
, ℵ3 =

∂

∂x
, ℵ4 = t

∂

∂v
,

ℵ5 = x
∂

∂v
, ℵ6 = x2 ∂

∂v
, ℵ7 = x3 ∂

∂v
, ℵ8 =

(
v +

β

α

)
∂

∂v
,

ℵ9 = xt
∂

∂v
, ℵ10 = x2t

∂

∂v
, ℵ11 = x3t

∂

∂v
·

(18)

Case B: F(v) = β.

ℵ1 =
∂

∂t
, ℵ2 =

∂

∂v
, ℵ3 =

∂

∂x
,

ℵ4 = t
∂

∂v
, ℵ5 = x

∂

∂v
, ℵ6 = xt

∂

∂v
·

(19)
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Case C: F(v) = λ1(αv + β)σ + λ2.

ℵ1 =
∂

∂t
, ℵ2 =

∂

∂x
· (20)

Case D: F(v) = λ1e
αv + λ2.

ℵ1 =
∂

∂t
, ℵ2 =

∂

∂x
· (21)

Case E: F(v) = λ1 ln (αv + β) + λ2·

ℵ1 =
∂

∂t
, ℵ2 =

∂

∂x
· (22)

3.1 Optimal system

(1) For arbitrary F(v).
The commutation relation is satisfied by the basis elements,

[ℵm,ℵn] = 0, m, n = 1, 2. (23)

One can write the adjoint action representation as,

Ad
(
exp (ϵℵm).ℵn

)
= ℵn − ϵ[ℵm,ℵn] +

ϵ2

2!

[
ℵm, [ℵm,ℵn]

]
− . . . . (24)

We take into account a general element ℵ of L2 given by,

ℵ = θ1ℵ1 + θ2ℵ2. (25)

Because commutation relations are zero, the vector form cannot be reduced.

So, for θ1 ̸= 0, θ2 ̸= 0, we have ℵ1 + cℵ2, c ̸= 0. If θ1 = 0, then we have ℵ2. If θ2 = 0,
then we have ℵ1.

Hence, the one-dimensional optimal system of (17) is given by,{
ℵ1,ℵ2,ℵ1 + cℵ2

}
. (26)

Since symmetry generators for Case C,Case D and Case E are the same as in the arbitrary
case, therefore, Eq. (26) represents an optimal system of (20), (21) and (22).

Case A: F(v) = αv + β.

Table 1: Commutator Table.

[ℵi,ℵj ] ℵ1 ℵ2 ℵ3 ℵ4 ℵ5 ℵ6 ℵ7 ℵ8 ℵ9 ℵ10 ℵ11

ℵ1 0 0 0 ℵ2 0 0 0 0 ℵ5 ℵ6 ℵ7

ℵ2 0 0 0 0 0 0 0 ℵ2 0 0 0
ℵ3 0 0 0 0 ℵ2 2ℵ5 3ℵ6 0 ℵ4 2ℵ9 3ℵ10

ℵ4 -ℵ2 0 0 0 0 0 0 ℵ4 0 0 0
ℵ5 0 0 -ℵ2 0 0 0 0 ℵ5 0 0 0
ℵ6 0 0 -2ℵ5 0 0 0 0 ℵ6 0 0 0
ℵ7 0 0 -3ℵ6 0 0 0 0 ℵ7 0 0 0
ℵ8 0 −ℵ2 0 -ℵ4 -ℵ5 -ℵ6 -ℵ7 0 -ℵ9 -ℵ10 -ℵ11

ℵ9 -ℵ5 0 -ℵ4 0 0 0 0 ℵ9 0 0 0
ℵ10 -ℵ6 0 -2ℵ9 0 0 0 0 ℵ10 0 0 0
ℵ11 -ℵ7 0 -3ℵ10 0 0 0 0 ℵ11 0 0 0
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Table 2: Adjoint Table.

Ad(eϵ) ℵ1 ℵ2 ℵ3 ℵ4 ℵ5 ℵ6

ℵ1 ℵ1 ℵ2 ℵ3 ℵ4 − ϵℵ2 ℵ5 ℵ6

ℵ2 ℵ1 ℵ2 ℵ3 ℵ4 ℵ5 ℵ6

ℵ3 ℵ1 ℵ2 ℵ3 ℵ4 ℵ5 − ϵℵ2 ℵ6 + ϵ2ℵ2 − 2ϵℵ5

ℵ4 ℵ1 + ϵℵ2 ℵ2 ℵ3 ℵ4 ℵ5 ℵ6

ℵ5 ℵ1 ℵ2 ℵ3 + ϵℵ2 ℵ4 ℵ5 ℵ6

ℵ6 ℵ1 ℵ2 ℵ3 + 2ϵℵ5 ℵ4 ℵ5 ℵ6

ℵ7 ℵ1 ℵ2 ℵ3 + 3ϵℵ6 ℵ4 ℵ5 ℵ6

ℵ8 ℵ1 eϵℵ2 ℵ3 eϵℵ4 eϵℵ5 eϵℵ6

ℵ9 ℵ1 + ϵℵ5 ℵ2 ℵ3 + ϵℵ4 ℵ4 ℵ5 ℵ6

ℵ10 ℵ1 + ϵℵ6 ℵ2 ℵ3 + 2ϵℵ9 ℵ4 ℵ5 ℵ6

ℵ11 ℵ1 + ϵℵ7 ℵ2 ℵ3 + 3ϵℵ10 ℵ4 ℵ5 ℵ6

Table 3: Adjoint Table.

Ad(eϵ) ℵ7 ℵ8 ℵ9 ℵ10 ℵ11

ℵ1 ℵ7 ℵ8 ℵ9 − ϵℵ5 ℵ10 − ϵℵ6 ℵ11 − ϵℵ7

ℵ2 ℵ7 ℵ8 − ϵℵ2 ℵ9 ℵ10 ℵ11

ℵ3 ℵ7 − ϵ3ℵ2 + 3ϵ2ℵ5 − 3ϵℵ6 ℵ8 ℵ9 − ϵℵ4 ℵ10 + ϵ2ℵ4 − 2ϵℵ9 ℵ11 − ϵ3ℵ4 + 3ϵ2ℵ9 − 3ϵℵ10

ℵ4 ℵ7 ℵ8 − ϵℵ4 ℵ9 ℵ10 ℵ11

ℵ5 ℵ7 ℵ8 − ϵℵ5 ℵ9 ℵ10 ℵ11

ℵ6 ℵ7 ℵ8 − ϵℵ6 ℵ9 ℵ10 ℵ11

ℵ7 ℵ7 ℵ8 − ϵℵ7 ℵ9 ℵ10 ℵ11

ℵ8 eϵℵ7 ℵ8 eϵℵ9 eϵℵ10 eϵℵ11

ℵ9 ℵ7 ℵ8 − ϵℵ9 ℵ9 ℵ10 ℵ11

ℵ10 ℵ7 ℵ8 − ϵℵ10 ℵ9 ℵ10 ℵ11

ℵ11 ℵ7 ℵ8 − ϵℵ11 ℵ9 ℵ10 ℵ11

Consider a general element ℵ ∈ L11 given by,

ℵ = θ1ℵ1 + θ2ℵ2 + θ3ℵ3 + θ4ℵ4 + θ5ℵ5 + θ6ℵ6 + θ7ℵ7 + θ8ℵ8 + θ9ℵ9

+ θ10ℵ10 + θ11ℵ11. (27)

Case 1: θ1 ̸= 0, θ3 = θ4 = θ8 = θ9 = θ10 = θ11 = 0.
By adjoint actions of ℵ4, ℵ9, ℵ10 and ℵ11 we get ℵ = ℵ1.

Case 2: θ1 ̸= 0, θ3 ̸= 0, θ4 = θ8 = θ9 = θ10 = θ11 = 0.
By adjoint actions of ℵ4, ℵ9, ℵ10 and ℵ11 we get ℵ = ℵ1 + cℵ3, c ̸= 0.

Case 3: θ1 ̸= 0, θ3 = 0, θ4 ̸= 0, θ8 = θ9 = θ10 = θ11 = 0.
By adjoint actions of ℵ4, ℵ9, ℵ10, ℵ11 and ℵ8 we get ℵ = ℵ1 ± ℵ4.

Case 4: θ1 ̸= 0, θ8 ̸= 0, θ3 = θ4 = θ9 = θ10 = θ11 = 0.
By adjoint actions of ℵ4, ℵ9, ℵ10 and ℵ11 we get ℵ = ℵ1 + cℵ8, c ̸= 0.

Case 5: θ1 ̸= 0, θ9 ̸= 0, θ3 = θ4 = θ8 = θ10 = θ11 = 0.
By adjoint actions of ℵ4, ℵ9, ℵ10, ℵ11 and ℵ8 we get ℵ = ℵ1 ± ℵ9.
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Case 6: θ1 ̸= 0, θ10 ̸= 0, θ3 = θ4 = θ8 = θ9 = θ11 = 0.
By adjoint actions of ℵ4, ℵ9, ℵ10, ℵ11 and ℵ8 we get ℵ = ℵ1 ± ℵ10.

Case 7: θ1 ̸= 0, θ11 ̸= 0, θ3 = θ4 = θ8 = θ9 = θ10 = 0.
By adjoint actions of ℵ4, ℵ9, ℵ10, ℵ11 and ℵ8 we get ℵ = ℵ1 ± ℵ11.

Case 8: θ2 ̸= 0, θ3 = θ1 = θ4 = θ5 = θ6 = θ7 = θ8 = θ9 = θ10 = θ11 = 0.
We have ℵ = ℵ2.

Case 9: θ2 ̸= 0, θ9 ̸= 0, θ11 = θ10 = θ8 = θ7 = θ6 = θ5 = θ4 = θ3 = θ1 = 0.
By adjoint action of ℵ8 we get ℵ = ℵ2 + cℵ9, c ̸= 0.

Case 10: θ2 ̸= 0, θ1 = θ3 = θ4 = θ5 = θ6 = θ7 = θ8 = θ9 = θ11 = 0, θ10 ̸= 0.
By adjoint action of ℵ8 we get ℵ = ℵ2 + cℵ10, c ̸= 0.

Case 11: θ11 ̸= 0, θ10 = θ9 = θ8 = θ7 = θ6 = θ5 = θ4 = θ3 = 0, θ2 ̸= 0, θ1 = 0
By adjoint action of ℵ8 we get ℵ = ℵ2 + cℵ11, c ̸= 0.

Case 12: θ3 ̸= 0, θ1 = θ7 = θ8 = θ11 = 0.
By adjoint actions of ℵ5, ℵ6, ℵ7, ℵ9, ℵ10 and ℵ11 we get ℵ = ℵ3.

Case 13: θ3 ̸= 0, θ7 ̸= 0, θ1 = θ8 = θ11 = 0.
By adjoint actions of ℵ5, ℵ6, ℵ7, ℵ9, ℵ10, ℵ11 and ℵ8 we get ℵ = ℵ3 ± ℵ7.

Case 14: θ3 ̸= 0, θ8 ̸= 0, θ1 = θ7 =, θ11 = 0.
By adjoint actions of ℵ5, ℵ6, ℵ7, ℵ9, ℵ10 and ℵ11 we get ℵ = ℵ3 + cℵ8, c ̸= 0.

Case 15: θ3 ̸= 0, θ1 = θ7 = θ8 = 0, θ11 ̸= 0.
By adjoint actions of ℵ5, ℵ6, ℵ7, ℵ9, ℵ10, ℵ11 and ℵ8 we get ℵ = ℵ3 ± ℵ11.

Case 16: θ4 ̸= 0, θ1 = θ3 = θ5 = θ6 = θ7 = θ8 = θ9 = θ10 = θ11 = 0.
By adjoint action of ℵ1 we get ℵ = ℵ4.

Case 17: θ1 = θ3 = θ4 ̸= 0, θ5 ̸= 0, θ6 = θ7 = θ8 = θ9 = θ10 = θ11 = 0.
By adjoint action of ℵ1 we get ℵ = ℵ4 + cℵ5, c ̸= 0.

Case 18: θ1 = θ3 = 0, θ4 ̸= 0, θ6 ̸= 0, θ7 = θ8 = θ9 = θ10 = θ11 = 0.
By adjoint action of ℵ3 we get ℵ = ℵ4 + cℵ6, c ̸= 0.

Case 19: θ1 = θ3 = 0, θ4 ̸= 0, θ7 ̸= 0, θ8 = θ9 = θ10 = θ11 = 0.
By adjoint action of ℵ3 we get ℵ = ℵ4 + cℵ7, c ̸= 0.

Case 20: θ1 = θ3 = θ4 = θ5 ̸= 0, θ6 = θ7 = θ8 = θ9 = θ10 = θ11 = 0.
By adjoint action of ℵ3 we get ℵ = ℵ5.

Case 21: θ1 = θ3 = θ5 ̸= 0, θ6 = θ7 = θ8 = θ10 ̸= 0, θ11 = 0.
By adjoint action of ℵ3 we get ℵ = ℵ5 + cℵ10, c ̸= 0.

Case 22: θ1 = θ3 = 0, θ5 ̸= 0, θ6 = θ7 = θ8 = 0, θ11 ̸= 0.
By adjoint action of ℵ3 we get ℵ = ℵ5 + cℵ11, c ̸= 0.
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Case 23: θ1 = θ3 = θ4 = 0, θ6 ̸= 0, θ7 = θ8 = θ9 = θ10 = θ11 = 0.
By adjoint action of ℵ3 we get ℵ = ℵ6.

Case 24: θ1 = θ3 = 0, θ6 ̸= 0, θ7 = θ8 = 0, θ9 ̸= 0, θ10 = θ11 = 0.
By adjoint action of ℵ3 we get ℵ = ℵ6 + cℵ9, c ̸= 0.

Case 25: θ1 = θ3 = 0, θ6 ̸= 0, θ7 = θ8 = 0, θ11 ̸= 0.
By adjoint action of ℵ3 we get ℵ = ℵ6 + cℵ11, c ̸= 0.

Case 26: θ1 = θ3 = θ4 = 0, θ7 ̸= 0, θ8 = θ9 = θ10 = θ11 = 0.
By adjoint action of ℵ3 we get ℵ = ℵ7.

Case 27: θ1 = θ3 = 0, θ7 ̸= 0, θ8 = 0, θ9 ̸= 0, θ10 = θ11 = 0.
By adjoint action of ℵ3 we get ℵ = ℵ7 + cℵ9, c ̸= 0.

Case 28: θ1 = θ3 = 0, θ7 ̸= 0, θ8 = 0, θ10 ̸= 0, θ11 = 0.
By adjoint action of ℵ3 we get ℵ = ℵ7 + cℵ10, c ̸= 0.

Case 29: θ1 = 0, θ3 = 0, θ8 ̸= 0.
By adjoint actions of ℵ2, ℵ4, ℵ5, ℵ6, ℵ7, ℵ9, ℵ10, ℵ11 we get ℵ = ℵ8.

Case 30: θ1 = θ2 = θ3 = θ6 = θ7 = θ8 = 0, θ9 ̸= 0, θ10 = θ11 = 0.
By adjoint actions of ℵ1 and ℵ3 we get ℵ = ℵ9.

Case 31: θ1 = θ3 = θ7 = θ8 = 0, θ10 ̸= 0, θ11 = 0.
By adjoint actions of ℵ1 and ℵ3 we get ℵ = ℵ10.

Case 32: θ1 = 0, θ3 = 0, θ8 = 0, θ11 ̸= 0.
By adjoint actions of ℵ1 and ℵ3 we get ℵ = ℵ11.

Case 33: θ1 ̸= 0, θ3 ̸= 0, θ8 ̸= 0.
By adjoint actions of ℵ4, ℵ6, ℵ7, ℵ10 and ℵ11 we get ℵ = ℵ1 + cℵ3 + dℵ8.

Case 34: θ1 ̸= 0, θ3 ̸= 0, θ8 = 0, θ11 ̸= 0.
By adjoint action of ℵ3, ℵ11 and ℵ8 we get ℵ = ℵ1 + cℵ3 ± ℵ11.

Case B: F(v) = β.

Table 4: Commutator Table.

[ℵi,ℵj ] ℵ1 ℵ2 ℵ3 ℵ4 ℵ5 ℵ6

ℵ1 0 0 0 ℵ2 0 ℵ5

ℵ2 0 0 0 0 0 0
ℵ3 0 0 0 0 ℵ2 ℵ4

ℵ4 -ℵ2 0 0 0 0 0
ℵ5 0 0 -ℵ2 0 0 0
ℵ6 -ℵ5 0 -ℵ4 0 0 0
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Table 5: Adjoint Table.

[ℵi,ℵj ] ℵ1 ℵ2 ℵ3 ℵ4 ℵ5 ℵ6

ℵ1 ℵ1 ℵ2 ℵ3 ℵ4 − ϵℵ2 ℵ5 ℵ6 − ϵℵ5

ℵ2 ℵ1 ℵ2 ℵ3 ℵ4 ℵ5 ℵ6

ℵ3 ℵ1 ℵ2 ℵ3 ℵ4 ℵ5 − ϵℵ2 ℵ6 − ϵℵ4

ℵ4 ℵ1 + ϵℵ2 ℵ2 ℵ3 ℵ4 ℵ5 ℵ6

ℵ5 ℵ1 ℵ2 ℵ3 + ϵℵ2 ℵ4 ℵ5 ℵ6

ℵ6 ℵ1 + ϵℵ5 ℵ2 ℵ3 + ϵℵ4 ℵ4 ℵ5 ℵ6

Consider a general element ℵ ∈ L6 given by,

ℵ = θ1ℵ1 + θ2ℵ2 + θ3ℵ3 + θ4ℵ4 + θ5ℵ5 + θ6ℵ6. (28)

Case 1: θ1 ̸= 0, θ3 = 0, θ4 = 0, θ6 = 0.
By adjoint actions of ℵ4 and ℵ6 we get ℵ = ℵ1.

Case 2: θ1 ̸= 0, θ3 ̸= 0, θ6 = 0.
By adjoint actions of ℵ1 and ℵ6 we get ℵ = ℵ1 + cℵ3, c ̸= 0.

Case 3: θ1 ̸= 0, θ3 = 0, θ4 ̸= 0, θ6 = 0.
By adjoint action of ℵ1 we get ℵ = ℵ1 + cℵ4, c ̸= 0.

Case 4: θ1 ̸= 0, θ3 = 0, θ6 ̸= 0.
By adjoint actions of ℵ1 and ℵ3 we get ℵ = ℵ1 + cℵ6, c ̸= 0.

Case 5: θ2 ̸= 0, θ1 = θ3 = θ4 = θ5 = θ6 = 0.
We get ℵ = ℵ2.

Case 6: θ2 ̸= 0, θ1 = θ3 = θ4 = θ5 = 0, θ6 ̸= 0.
We get ℵ = ℵ2 + cℵ6, c ̸= 0.

Case 7: θ3 ̸= 0, θ1 = θ5 = θ6 = 0.
By adjoint actions of ℵ5 and ℵ6 we get ℵ = ℵ3.

Case 8: θ3 ̸= 0, θ5 ̸= 0, θ1 = θ6 = 0.
By adjoint actions of ℵ5 and ℵ6 we get ℵ = ℵ3 + cℵ5, c ̸= 0.

Case 9: θ1 = 0, θ3 ̸= 0, θ6 ̸= 0.
By adjoint actions of ℵ3 and ℵ1 we get ℵ = ℵ3 + cℵ6, c ̸= 0.

Case 10: θ1 = 0, θ3 = 0, θ4 ̸= 0, θ5 = 0, θ6 = 0.
By adjoint action of ℵ1 we get ℵ = ℵ4.

Case 11: θ1 = 0, θ3 = 0, θ4 ̸= 0, θ5 ̸= 0, θ6 = 0.
By adjoint action of ℵ1 we get ℵ = ℵ4 + cℵ5, c ̸= 0.

Case 12: θ1 = 0, θ3 = 0, θ4 = 0, θ5 ̸= 0, θ6 = 0.
By adjoint action of ℵ3 we get ℵ = ℵ5.
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Case 13: θ1 = 0, θ3 = 0, θ6 ̸= 0.
By adjoint actions of ℵ1 and ℵ3 we get ℵ = ℵ6.

Case 14: θ1 ̸= 0, θ3 ̸= 0, θ6 ̸= 0.
By adjoint actions of ℵ1 and ℵ3 we get ℵ = ℵ1 + cℵ3 + dℵ6, c, d ̸= 0.

4 Similarity Reductions and Invariant Solutions

(1) When F(v) is arbitrary.

Symmetry reduction by ℵ1:
The associated characteristic equation is,

dx

0
=

dt

1
=

dv

0
, (29)

which gives v = g(r), r = x. This transformation reduces the Eq. (4) to

g′′′′ − F
(
g(r)

)
= 0. (30)

The function F determines the precise answer to the equation (4).

Symmetry reduction by ℵ2:
The associated characteristic equation is,

dx

1
=

dt

0
=

dv

0
, (31)

giving v = g(r), r = t. This transformation reduces the Eq. (4) to

g′′′′ + g′′ − F (g(r)) = 0. (32)

The function F determines the precise answer to equation (32).

Symmetry reduction by ℵ1 + cℵ2:
The associated characteristic equation is,

dx

c
=

dt

1
=

dv

0
, (33)

which gives v = g(r), r = t− x

c
. This transformation reduces the Eq. (4) to

(c4 − c2 + 1)g′′′′ + c4g′′ − c4F (g(r)) = 0. (34)

The function F determines the precise answer to equation (34).

Case A: F(v) = αv + β.

Symmetry reduction by ℵ1:
The associated characteristic equation is,

dx

0
=

dt

1
=

dv

0
, (35)
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giving v = g(r), r = x. This transformation reduces the Eq. (4) to

g′′′′ − αg − β = 0, (36)

this gives,

g(r) = c1e
α

1
4 r + c2e

−α
1
4 r + c3e

−iα
1
4 r + c4e

iα
1
4 r − β

α
· (37)

So, the solution in the original variables becomes,

v(x, t) = c1e
α

1
4 x + c2e

−α
1
4 x + c3e

−iα
1
4 x + c4e

iα
1
4 x − β

α
· (38)

Symmetry reduction by ℵ3:
The associated characteristic equation is,

dx

1
=

dt

0
=

dv

0
, (39)

which gives v = g(r), r = t. This transformation reduces the Eq. (4) to

g′′′′ + g′′ − αg − β = 0, (40)

this gives,

g(r) = c1e
−

√
−2−2

√
1+4αr

2 + c2e

√
−2−2

√
1+4αr

2 + c3e
−

√
−2+2

√
1+4αr

2

+ c4e

√
−2+2

√
1+4αr

2 − β

α
·

(41)

So, the solution in the original variables becomes,

v(x, t) = c1e
−

√
−2−2

√
1+4αt

2 + c2e

√
−2−2

√
1+4αt

2 + c3e
−

√
−2+2

√
1+4αt

2

+ c4e

√
−2+2

√
1+4αt

2 − β

α
·

(42)

Symmetry reduction by ℵ1 + cℵ3:
The associated characteristic equation is,

dx

c
=

dt

1
=

dv

0
, (43)

giving v = g(r), r = t− x

c
. This transformation reduces the Eq. (4) to

(c4 − c2 + 1)g′′′′ − c4(αg − g′′ + β) = 0. (44)

So, the solution in the original variables becomes,

v(x, t) = c1e
−
√

−c2+
√

(4c4−4c2+4)α+c4(tc−x)√
2(c4−c2+1) + c2e

√
−c2+

√
(4c4−4c2+4)α+c4(tc−x)√

2(c4−c2+1)

+ c3e
−i

√
c2+

√
(4c4−4c2+4)α+c4(tc−x)√

2(c4−c2+1) + c4e
i

√
c2+

√
(4c4−4c2+4)α+c4(tc−x)√

2(c4−c2+1) − β

α
·

(45)
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Symmetry reduction by ℵ1 + cℵ8:
The associated characteristic equation is,

dx

0
=

dt

1
=

dv

v + β
α

, (46)

giving v = etcg(r)− β

α
, r = x. This transformation reduces the Eq. (4) to

g′′′′ − c2g′′ + c4g + c2g − αg = 0. (47)

So, the solution in the original variables becomes,

v(x, t) = c1e
tc−

√
2c2−2

√
−3c4−4c2+4αx

2 + c2e
tc+

√
2c2−2

√
−3c4−4c2+4αx

2

+ c3e
tc−

√
2c2+2

√
−3c4−4c2+4αx

2 + c4e
tc+

√
2c2+2

√
−3c4−4c2+4αx

2 − β

α
·

(48)

Symmetry reduction by ℵ3 + cℵ8:
The associated characteristic equation is,

dx

1
=

dt

0
=

dv

v + β
α

, (49)

which gives v = ecxg(r)− β

α
, r = t. This transformation reduces the Eq. (4) to

g′′′′ − c2g′′ + g′′ + c4g − αg = 0. (50)

So, the solution in the original variables becomes,

v(x, t) = c1e
cx−

√
−2+2c2−2

√
−3c4−2c2+4α+1t

2 + c2e
cx+

√
−2+2c2−2

√
−3c4−2c2+4α+1t

2

+ c3e
cx−

√
−2+2c2+2

√
−3c4−2c2+4α+1t

2 + c4e
cx+

√
−2+2c2+2

√
−3c4−2c2+4α+1t

2 − β

α
·

(51)

Case B: F(v) = β.

Symmetry reduction by ℵ1:
The associated characteristic equation is,

dx

0
=

dt

1
=

dv

0
, (52)

giving v = g(r), r = x. This transformation reduces the Eq. (4) to

g′′′′ − β = 0, (53)

this gives,

g(r) =
1

24
βr4 +

c1
6
r3 +

c2
2
r2 + c3r + c4. (54)

So, the solution in the original variables becomes,

v(x, t) =
1

24
βx4 +

c1
6
x3 +

c2
2
x2 + c3x+ c4. (55)
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Symmetry reduction by ℵ3:
The associated characteristic equation is,

dx

1
=

dt

0
=

dv

0
, (56)

which gives v = g(r), r = t. This transformation reduces the Eq. (4) to

g′′′′ + g′′ − β = 0, (57)

this gives,

g(r) =
β

2
r2 − c1 cos r − c2 sin r + c3r + c4. (58)

So, the solution in the original variables becomes,

v(x, t) =
β

2
t2 − c1 cos t− c2 sin t+ c3t+ c4. (59)

Symmetry reduction by ℵ1 + cℵ3:
The associated characteristic equation is,

dx

c
=

dt

1
=

dv

0
, (60)

which gives v = g(r), r = t− x

c
. This transformation reduces the Eq. (4) to

(c4 − c2 + 1)g′′′′ − c4(β − g′′) = 0. (61)

So, the solution in the original variables becomes,

v(x, t) =
1

2c4

(
− 2c1(c

4 − c2 + 1) cos

(
c(tc− x)√
c4 − c2 + 1

)
− 2c2(c

4 − c2 + 1) sin

(
c(tc− x)√
c4 − c2 + 1

)
+
(
(βt2 + 2c3t+ 2c4)c

2 − 2x(βt+ c3)c+ βx2
)
c2

)
·

(62)

Symmetry reduction by ℵ1 + cℵ4:
The associated characteristic equation is,

dx

0
=

dt

1
=

dv

ct
, (63)

giving v =
t2c

2
+ g(r), r = x. This transformation reduces the Eq. (4) to

g′′′′ + c− β = 0. (64)

So, the solution in the original variables becomes,

v(x, t) =
t2c

2
+

x4

24
(β − c) +

c1
6
x3 +

c2
2
x2 + c3x+ c4. (65)
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Symmetry reduction by ℵ1 + cℵ6:
The associated characteristic equation is,

dx

0
=

dt

1
=

dv

cxt
, (66)

which gives v =
t2cx

2
+ g(r), r = x. This transformation reduces the Eq. (4) to

g′′′′ + cg − β = 0. (67)

So, the solution in the original variables becomes,

v(x, t) =
t2cx

2
− c

120
x5 +

β

24
x4 +

c1
6
x3 +

c2
2
x2 + c3x+ c4. (68)

Symmetry reduction by ℵ3 + cℵ5:
The associated characteristic equation is,

dx

1
=

dt

0
=

dv

cx
, (69)

giving v =
cx2

2
+ g(r), r = t. This transformation reduces the Eq. (4) to

g′′′′ + g′′ − β = 0. (70)

So, the solution in the original variables becomes,

v(x, t) =
cx2

2
+

βt2

2
− c1 cos (t)− c2 sin (t) + c3t+ c4. (71)

Symmetry reduction by ℵ1 + cℵ3 + dℵ6:
The associated characteristic equation is,

dx

c
=

dt

1
=

dv

xtd
, (72)

giving v =
3cdtx2 − x3d

6c2
+ g(r), r = t− x

c
. This transformation reduces the Eq. (4) to

(c4 − c2 + 1)g′′′′ − c4(β − g′′) = 0. (73)

So, the solution in the original variables becomes,

v(x, t) =
1

6c4

(
− 6c1(c

4 − c2 + 1) cos
( c(tc− x)√

c4 − c2 + 1

)
− 6c2(c

4 − c2 + 1) sin
( c(tc− x)√

c4 − c2 + 1

)
+ 3c2((βt2 + 2c3t+ 2c4)c

2 + x(xtd− 2βt− 2c3)c−
d

3
x3 + βx2)

)
·

(74)
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Symmetry reduction by ℵ3 + cℵ6:
The associated characteristic equation is,

dx

1
=

dt

0
=

dv

cxt
, (75)

which gives v =
ctx2

2
+ g(r), r = t. This transformation reduces the Eq. (4) to

g′′′′ + g′′ − β = 0. (76)

So, the solution in the original variables becomes,

v(x, t) =
βt2

2
− c1 cos (t)− c2 sin (t) +

(cx2 + 2c3)t

2
+ c4. (77)

Case C: F(v) = λ1(αv + β)σ + λ2.

Symmetry reduction by ℵ1:
The associated characteristic equation is,

dx

0
=

dt

1
=

dv

0
, (78)

giving v = g(r), r = x. This transformation reduces the Eq. (4) to

g′′′′ − αg − λ1(αg + β)σ − λ2 = 0. (79)

Symmetry reduction by ℵ2:
The associated characteristic equation is,

dx

1
=

dt

0
=

dv

0
, (80)

which gives v = g(r), r = t. This transformation reduces the Eq. (4) to

g′′′′ + g′′ − αg − λ1(αg + β)σ − λ2 = 0. (81)

Symmetry reduction by ℵ1 + cℵ2:
The associated characteristic equation is,

dx

c
=

dt

1
=

dv

0
, (82)

which gives v = g(r), r = t− x

c
. This transformation reduces the Eq. (4) to

(c4 − c2 + 1)g′′′′ + c4(−αg + g′′ − λ2)− c4λ1(αg + β)σ = 0. (83)

Case D: F(v) = λ1e
αv + λ2.

Symmetry reduction by ℵ1:
The associated characteristic equation is,

dx

0
=

dt

1
=

dv

0
, (84)

giving v = g(r), r = x. This transformation reduces the Eq. (4) to

g′′′′ − αg − λ1e
αg − λ2 = 0. (85)
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Symmetry reduction by ℵ2:
The associated characteristic equation is,

dx

1
=

dt

0
=

dv

0
, (86)

which gives v = g(r), r = t. This transformation reduces the Eq. (4) to

g′′′′ + g′′ − αg − λ1e
αg − λ2 = 0. (87)

Symmetry reduction by ℵ1 + cℵ2:
The associated characteristic equation is,

dx

c
=

dt

1
=

dv

0
, (88)

which gives v = g(r), r = t− x

c
. This transformation reduces the Eq. (4) to

(c4 − c2 + 1)g′′′′ − c4(λ1e
αg + αg + λ2 − g′′) = 0. (89)

Case E: F(v) = λ1 ln (αv + β) + λ2.

Symmetry reduction by ℵ1:
The associated characteristic equation is,

dx

0
=

dt

1
=

dv

0
, (90)

giving v = g(r), r = x. This transformation reduces the Eq. (4) to

g′′′′ − αg − λ1 ln (αg + β)− λ2 = 0. (91)

Symmetry reduction by ℵ2:
The associated characteristic equation is,

dx

1
=

dt

0
=

dv

0
, (92)

which gives v = g(r), r = t. This transformation reduces the Eq. (4) to

g′′′′ + g′′ − αg − λ1 ln (αg + β)− λ2 = 0. (93)

Symmetry reduction by ℵ1 + cℵ2:
The associated characteristic equation is,

dx

c
=

dt

1
=

dv

0
, (94)

which gives v = g(r), r = t− x

c
. This transformation reduces the Eq. (4) to

(c4 − c2 + 1)g′′′′ − c4(λ1 ln (αg + β) + αg + λ2 − g′′) = 0. (95)
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5 Conservation Laws

The fourth-order beam equation, like its second-order wave equation counterpart as it turns
out, displays interesting conservation properties, most of which are tied in with the symmetry
structure of the equation. For a zero applied force F and linear Klein-Gordon type F = δv,
the conservation laws are infinite; most of which are consequences of higher-order ’multipli-
ers’. Briefly, the multiplier approach requires the determination of a multiplier,Q, say, for which
Q
[
vtttt + vtt − vttxx + vxxxx −F (v)

]
is a total divergence [2, 3]. We list the conserved flows below.

The conserved flow (T x, T t) is obtained by applying the conservation law DtTt + DxTx = 0 to
the solutions of the differential equation. If DtT

t + DxT
x = 0 identically, the vector (T x, T t) is

called a ‘trivial’ conserved vector.

The list belowenumerates themultipliersQ and correspondingnontrivial flows (T x, T t), where
appropriate, the form v(i,j) represents vix jt.

a. F = 0,

i.

x :

(
1

6
[−3xv(1,2) + 6xv(3,0) + v(0,2) − 6v(2,0)], xv(0,1) + xv(0,3) − 1

2
xv(2,1) +

1

3
v(1,1)

)
.

ii.

t :

(
− 1

2
tv(1,2) + tv(3,0) +

1

3
v(1,1),

1

6

[
6tv(0,1) + 6tv(0,3) − 3tv(2,1) − 6v(0,2) + v(2,0) − 6v

])
.

iii.

xt :

(
1

6

(
−3txv(1,2) + 6txv(3,0) + tv(0,2) − 6tv(2,0) + 2xv(1,1) − 2v(0,1)

)
,

1

6

(
6txv(0,1) + 6txv(0,3) − 3txv(2,1) + 2tv(1,1) − 6xv(0,2) + xv(2,0) − 2v(1,0) − 6xv

))
.

iv.

1 :

(
v(3,0) − 1

2
v(1,2), v(0,1) + v(0,3) − 1

2
v(2,1)

)
.

v.

vt :

(
1

12

[
3vv(1,3) − 6vv(3,1) − v(0,3)v(1,0) + 6v(2,1)v(1,0) + 3v(0,2)v(1,1)

− 5v(0,1)v(1,2) − 6v(1,1)v(2,0) + 6v(0,1)v(3,0)
]
,

1

12

[
− 3vv(2,2) + 6vv(4,0) + 6

(
v(0,1)

)2
+ 4

(
3v(0,3) − v(2,1)

)
v(0,1)

− 6
(
v(0,2)

)2
+ 2

(
v(1,1)

)2
− 2v(1,0)v(1,2) + v(0,2)v(2,0)

])
.

603



S. M. Al-Omari et al. Malaysian J. Math. Sci. 17(4): 587–610(2023) 587 - 610

vi.

vx :

(
1

12

[
3vv(1,3) − 6vv(3,1) − v(0,3)v(1,0) + 6v(2,1)v(1,0) + 3v(0,2)v(1,1)

− 5v(0,1)v(1,2) − 6v(1,1)v(2,0) + 6v(0,1)v(3,0)
]
,

1

12

[
− 3vv(2,2) + 6vv(4,0) + 6

(
v(0,1)

)2
+ 4

(
3v(0,3) − v(2,1)

)
v(0,1)

− 6
(
v(0,2)

)2
+ 2

(
v(1,1)

)2
− 2v(1,0)v(1,2) + v(0,2)v(2,0)

])
.

vii.

sin(t+ x) :

(
1

12

[
3vv(1,3) − 6vv(3,1) − v(0,3)v(1,0) + 6v(2,1)v(1,0) + 3v(0,2)v(1,1)

− 5v(0,1)v(1,2) − 6v(1,1)v(2,0) + 6v(0,1)v(3,0)
]
,

1

12

[
− 3vv(2,2) + 6vv(4,0) + 6

(
v(0,1)

)2
+ 4

(
3v(0,3) − v(2,1)

)
v(0,1)

− 6
(
v(0,2)

)2
+ 2

(
v(1,1)

)2
− 2v(1,0)v(1,2) + v(0,2)v(2,0)

])
.

b. Now consider the beam equationwith linear force in v, viz., vtttt+vtt−vttxx+vxxxx−δv = 0.
We obtain the following conserved flows.

i.

e(−δ)1/4x :

(
1

6
e

4√−δx

[
− 6(−δ)3/4v +

4
√
−δvtt − 6

4
√
−δvxx + 6

√
−δvx − 3vxtt + 6vxxx

]
,

− 1

6
e

4√−δx

[
− 2

4
√
−δvxt +

(√
−δ − 6

)
vt + 3vxxt − 6vttt

])
.

ii.

e−(−δ)1/4x :

(
1

6
e

4√−δ(−x)

[
6(−δ)3/4v +

4
√
−δ (−vtt) + 6

4
√
−δvxx + 6

√
−δvx − 3vxtt

+ 6vxxx

]
,
1

6
e

4√−δ(−x)

[
− 2

4
√
−δvxt −

(√
−δ − 6

)
vt − 3vxxt + 6vttt

])
.
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iii.

e
1
2

√
−2(1+

√
1−4δ)t :

(
1

12
e

√
−

√
1−4δ−1t√

2

[
2

(√
2

√
−
√
1− 4δ − 1vxt − 3vxtt + 6vxxx

)
+
(√

1− 4δ + 1
)
vx

]
,

1

12
e

√
−

√
1−4δ−1t√

2

[
3
√
2

√
−
√
1− 4δ − 1

(√
1− 4δ − 1

)
v

− 6
(√

1− 4δ − 1
)
vt − 6

√
2

√
−
√
1− 4δ − 1vtt

+
√
2

√
−
√
1− 4δ − 1vxx − 6vxxt + 12vttt

])
.

v.

vt :

(
1

12

[
3vvxttt − 6vvxxxt − vtttvx + 6vxvxxt + 3vttvxt − 5vtvxtt − 6vxxvxt + 6vtvxxx

]
,

1

12

[
− 3v (vxxtt − 2vxxxx) + 6δv2 + 2vxt

2 − 2vxvxtt + vttvxx

+ 4vt (3vttt − vxxt) + 6vt
2 − 6vtt

2

])
.

vi.

vx :

(
1

12

[
v (−3vxxtt + 6vtt + 6vtttt) + 6δv2 + 2vxt

2 − 4vxvxtt + vttvxx − 2vtvxxt

− 6vxx
2 + 12vxvxxx

]
,

1

12

[
− 6vvxt − 6vvxttt + 3vvxxxt + 6vtttvx − 5vxvxxt − 6vttvxt + 3vxxvxt

+ vt (6vxtt + 6vx − vxxx)

])
.

vii.

sin(t+ x) :

(
1

12

[
3vv(1,3) − 6vv(3,1) − v(0,3)v(1,0) + 6v(2,1)v(1,0) + 3v(0,2)v(1,1)

− 5v(0,1)v(1,2) − 6v(1,1)v(2,0) + 6v(0,1)v(3,0)
]
,

1

12

[
− 3vv(2,2) + 6vv(4,0) + 6

(
v(0,1)

)2
+ 4

(
3v(0,3) − v(2,1)

)
v(0,1)

− 6
(
v(0,2)

)2
+ 2

(
v(1,1)

)2
− 2v(1,0)v(1,2) + v(0,2)v(2,0)

])
.

There exists another three, based on the multipliers e− 1
2

√
−2(1+

√
1−4δ)t, e 1

2

√
−2(1−

√
1−4δ)t

and e−
1
2

√
−2(1−

√
1−4δ)t.
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Note:
In the above cases, a. and b., there exist infinitely many conservation laws based on higher-order
multipliers such as ∂xxx, ∂xxt, etc. For example, in b. we have

vxxx :

(
1

12

[
3v(x, t) (4δvxx + 2vxxtt + 2vxxtttt − vxxxxtt)− 6δvx

2 + vx (−6vxtt − 6vxtttt + 5vxxxtt)

+ 6vttvxx + 6vttttvxx − 6vxxvxxtt − 3vxxxvxtt + 2vxtvxxxt + vttvxxxx − 2vtvxxxxt

+ 6vxxx
2

]
,
1

12

[
− 6v(x, t)vxxxt − 6v(x, t)vxxxttt + 3v(x, t)vxxxxxt + 6vtttvxxx − 3vxxxvxxt

− 6vttvxxxt + vxxvxxxt + 2vxxxxvxt − 2vxvxxxxt + vt (6vxxxtt + 6vxxx − vxxxxx)

])
.

(96)

c. For a general polynomial non-linearity in v, we have vtttt + vtt − vttxx + vxxxx − δvn = 0, for
which we have the following multipliers and corresponding conserved flows.

i.

vt :

(
1

12

[
3vvxttt − 6vvxxxt − vtttvx + 6vxvxxt + 3vttvxt − 5vtvxtt − 6vxxvxt + 6vtvxxx

]
,

1

12

[
− 3v (vxxtt − 2vxxxx) +

12δvn+1

n+ 1
+ 2vxt

2 − 2vxvxtt + vttvxx

+ 4vt (3vttt − vxxt) + 6vt
2 − 6vtt

2

])
.

ii.

vx :

(
1

12

[
v (6 (vtt + vtttt)− 3vxxtt) +

12δvn+1

n+ 1
+ 2vxt

2 + vxx (vtt − 6vxx)− 2vtvxxt

− 4vx (vxtt − 3vxxx)

]
,

1

12

[
− 6vvxt − 6vvxttt + 3vvxxxt + 6vtttvx − 5vxvxxt − 6vttvxt

+ 3vxxvxt + vt (6vxtt + 6vx − vxxx)

])
.

6 Physical Interpretation

In this section, our focus is directed towards the examination of the solutions derived through
graphical analysis. It’s well understood that this type of graphical analysis plays a pivotal role in
comprehending the physical dynamics inherent to the model under consideration. In our current
investigation, the graphical representation offers insights into the characteristics of the transverse
displacement of the beam (v) within the model being studied. The visual representations, as
depicted in Figures 1 through 4, distinctly portray the nature of the transverse displacement of the
beam within the context of the Timoshenko beam model (4).
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Figure 1: Nature of the transverse displacement of the beam by solution (45) with all the parameters are set to 1.
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Figure 2: Nature of the transverse displacement of the beam by solution (62) with β = 2 and all other parameters are set to 1.
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Figure 3: Nature of the transverse displacement of the beam by solution (65) with all the parameters are set to 1.
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Figure 4: Nature of the transverse displacement of the beam by solution (71) with all the parameters are set to 1.

7 Conclusion

We have performed a complete Lie symmetry classification of the fourth-order partial differ-
ential equation (4) arising from the Timoshenko beam model, with applied load F dependent
on transverse displacement v. The results reported in the literature for the Euler Bernoulli beam
were obtained by neglecting shear and rotational effects. The principal Lie algebra is found to be
two-dimensional for the arbitrarily applied load. The algebra extends to an infinite-dimensional
algebra for the constant and linear applied load. We systematically identified all conceivable in-
variant variables and their associated reductions for each vector field within a one-dimensional
optimal system of subalgebras. These reductions resulted in ordinary differential equations, and
we presented them comprehensively. These reductions were characterized as optimal, as they
enabled us to derive all non-similar invariant solutions through symmetry transformations from
the solutions of the reduced ODEs. We have also shown that the fourth-order beam equation
displays interesting conservation properties. For a zero applied force F and linear Klein-Gordon
type F = δv, the conservation laws are infinite; most of which are consequences of higher-order
‘multipliers’. Our findings strongly validate the reliability and effectiveness of the Lie symmetry
method in the context of beam theory. This success has inspired us to tackle more challenging
nonlinear and complex problems within beam theory using the same method in future research
endeavors.
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